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Abstract-Two linear multi-step schemes for the numerical solutions of initial values problems of the type ),,( yyxfy   by 

perturbed collocation using Legendre and Chebyshev polynomials as our approximating functions in tau methods of solution were developed. 

The schemes were found to perform very well when compared with existing known schemes and were also found to be stable.  
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1 INTRODUCTION  
Many of the real-life problems arising from the 

fields such as Engineering, Natural Sciences, 

Environmental and Social Sciences, Economics and 

other humanities can be modeled by either linear 

or non-linear (or quasi-linear) ordinary differential 

equations ‘’[1], [3], [4], [6]’’. Therefore, this calls for 

the use of efficient and effective numerical 

methods, particularly when such models are 

transformed to appropriate mathematical 

problems. 

     In this work, we shall derive some linear multi-

step methods (LMM) for initial value problems 

(IVP) of second order o.d.e. by perturbed 

collocation. 

Consider the general form of this type of equation 

in the form 
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A special case of this problem is  
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[7] looked into equation (2) and came up with two 

schemes (3) and (4) for the solution of this problem 

using Legendre and Chebyshev polynomials 

respectively. 
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     These schemes were found to perform very well 

but they were found to be incapable of handling 

problems of the type (1). Their problem was based 

on the fact that their method could not deal with 

the case when the RHS of 1 involves the first 

derivate. The fact that real-life problems are not 

limited to equations of the type (2) according to 

‘’[2 ], [5 ]’’ we decided to find a way of overcoming 

this shortcoming so that we could have an 

algorithm that will handle these two forms of 

equations to a good degree of accuracy. 

 

2 DERIVATION OF THE SCHEMES 
    In equation (1), we assume that  

     i. the equation has unique solution  

     ii 
ii xxh  1
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We then seek a solution of the form 
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where N is the degree of the polynomial )(xy
N

 

and )(xQ
j

, j = 0, 1, 2, … are canonical polynomials 

[8] generated by the operator  
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then, we can easily show that the following 

recurrence relation holds 
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Suppose N = 2 (for second order differential 

equations), then (5) can be written as  
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We define the residual function   

1)()()(:)( 11   NxPxPxRasxR NNNNNN    (9) 

which can be approximated by appropriate 

orthogonal polynomial. Substituting (8) in (1) we 

have 
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2.1 Legendre-tau Approximant 

We substitute (9) in (10) for N =2 to obtain  

  )()(),(2
221121
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where NP  is Legendre polynomial of degree N. 

Collocating (11) at 

11,   iii xxandxxxx  and 

interpolating (80) at 
1


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xx  and 
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obtain the following perturbed collocation 

equations 
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The polynomials P1 and P2 defined in [-1, 1] are 

then transformed into the interval [xi-1, xi+1]. 

Equations (12) are then solved for ai , i = 0, 1, 2  and 

j , j = 1, 2 so that (8) becomes   
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h ≠ - 2. Replacing i by i + 1 in (13) we have  
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Equation (14) is an implicit discrete formula used 

in solving (1). The error constant of the method is

 h

h





26

4  and it is of order 2. Its region of stability 

covers [-12, 0].  

 
2.2 Chebyshev-tau Approximant 

We define RN(x) in Chebyshev term as  
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If N = 2, we can write (8) as  
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Again, collocating (16) at 
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The polynomials Ti defined in [-1, 1] are first 

transformed into the interval [xi-1, xi+1] then 

substituted into (15). The resulting equations are 

then solved for the unknowns so that (5) can be 

written as  
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On replacing i by i + 1 we have 
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Equation (19) is again an implicit discrete formula 

used in solving (1). The error constant of the 

method is 
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4   and it is also of order 2. The 

stability region of the method is [-, 0]. 

 
3  NUMERICAL EXPERIMENT 

Two problems are used in our experiment.The first 

problem is of the type (2) while the second is of the 

type (1).  

Problem 1 

],1,0[,1)0(,1)0(   ;  xyyyy  h = 0.1 

Analytical solution is y = ex 
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TABLE 1 
             SOLUTION OF PROBLEM (1) USING GENERAL CASES (14) AND (19) AND THE   
             SPECIAL CASES (3) AND (4) 

 
TABLE 2 

           ERRORS IN PROBLEM (1) USING GENERAL CASES (14) AND (19) AND THE   

             SPECIAL CASES (3) AND( 4) 

 
 

TABLE 3 
             SOLUTION OF PROBLEM (2) USING GENERAL CASES (14) AND (19) AND THE SPECIAL 

CASES (3) AND (4) 

 

X 

General cases Special cases 

Legendre 

 (equation 2.6) 

Chebyshev 

(equation 3.6) 

Legendre 

(equation 1.3) 

Chebyshev 

(equation 1.4) 

0.0 0.000000000×100 0.000000000×100 0.000000000×100 0.000000000×100 

0.1 1.304000000x10-6 1.304000000x10-6 1.304000000x10-6 1.304000000x10-6 

0.2 1.054078312x10-2 1.053654149x10-2 2.316000000x10-6 6.769332500x10-6 

0.3 1.163983975x10-2 1.163063555x10-2 1.249756167x10-5 2.216197250x10-5 

0.4 2.506330703x10-2 2.476434219x10-2 5.887433587x10-4 8.922730200x10-4 

0.5 3.596509010x10-3 4.514135785x10-3 1.771619300x10-3 2.677146135x10-3 

0.6 0.090041670×100 8.825350582x10-2 3.596509010x10-3 4.514135785x10-3 

0.7 1.418157777x10-1 1.383179677x10-1 7.711124430x10-3 8.822160573x10-3 

0.8 2.045757502x10-1 1.971799740x10-1 1.515289005x10-2 2.002504479x10-2 

0.9 2.76941288x10-1 2.6221680972x10-1 3.087834911x10-2 4.265570100x10-2 

1.0 3.578826883x10-1 3.310201873x10-1 5.741798914x10-2 8.143455555x10-2 

 

X 

General cases Special cases 

Legendre 

 (equation 2.6) 

Chebyshev 

(equation 3.6) 

Legendre 

(equation 1.3) 

Chebyshev 

(equation 1.4) 

0.0 0.000000000×100 0.000000000×100 0.000000000×100 0.000000000×100 

0.1 1.304000000x10-6 1.304000000x10-6 1.304000000x10-6 1.304000000x10-6 

0.2 1.054078312x10-2 1.053654149x10-2 2.316000000x10-6 6.769332500x10-6 

0.3 1.163983975x10-2 1.163063555x10-2 1.249756167x10-5 2.216197250x10-5 

0.4 2.506330703x10-2 2.476434219x10-2 5.887433587x10-4 8.922730200x10-4 

0.5 3.596509010x10-3 4.514135785x10-3 1.771619300x10-3 2.677146135x10-3 

0.6 0.090041670×100 8.825350582x10-2 3.596509010x10-3 4.514135785x10-3 

0.7 1.418157777x10-1 1.383179677x10-1 7.711124430x10-3 8.822160573x10-3 

0.8 2.045757502x10-1 1.971799740x10-1 1.515289005x10-2 2.002504479x10-2 

0.9 2.76941288x10-1 2.6221680972x10-1 3.087834911x10-2 4.265570100x10-2 

1.0 3.578826883x10-1 3.310201873x10-1 5.741798914x10-2 8.143455555x10-2 

X General cases Special cases 

Legendre 

 (equation 2.6) 

Chebyshev 

(equation 3.6) 

Legendre 

(equation 1.3) 

Chebyshev 

(equation 1.4) 

0.0 1.904656430x10-1 1.904656430x10-1 0.000000000×100 0.00000000×100 

0.1 3.894125485x10-2 3.344156277x10-2 7.315453222x10-3 7.315453222x10-3 

0.2 1.033313860x10-1 8.218303910x10-2 1.025823425x10-2 1.033286126x10-2 

0.3 1.875686188x10-6 1.363872455x10-1 9.919233170x10-2 9.989583045x10-2 

0.4 2.856462596x10-1 1.859934026x10-1 1.600338640x10-1 1.784071329x10-1 

0.5 3.931299927x10-1 2.229072769x10-1 3.109254963x10-1 3.110114269x10-1 

0.6 5.067881753x10-1 2.404480508x10-1 4.883858890x10-1 5.234922800x10-1 

0.7 6.243019529x10-1 2.329074939x10-1 7.179635114x10-1 7.180717350x10-1 
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TABLE 4 

                  ERRORS IN PROBLEM (2) USING GENERAL CASES (14) AND (19) AND THE SPECIAL 
CASES (3) AND (4) 

 
4  DISCUSSION OF RESULTS 

The errors defined as 
nn

yxye  )(  are 

illustrated in tables 2 and 4 for problems 1 and 2 

respectively. The special schemes (3) and (4) 

perform better than the general schemes (13) and 

(14) when applied to solve special second order 

ordinary differential equation (2). On the contrary, 

they proved weak to handle the general cases of 

ordinary differential equation (1) as illustrated in 

table 1. However, the general schemes (13) and 

(14) attempted to solve special case (2) of ordinary 

differential equation averagely and proved much 

better in handling general case (1) compared with 

the special schemes (3) and (4). Nevertheless, the 

special and the general schemes cover same region 

of stability and same order but differs in error 

constant.  

 
5  Conclusion 

The results of this work as illustrated by problems 

(1) and (2) show that an algorithm for the solution 

of initial value problem using the combination of 

(3) and (14) or (4) and (19) is possible. If the 

problem is of the type (1), either (3) or (4) is called 

on to solve the problem but if the problem is of the 

type (2), either (14) or (19) is called on. The 

combination of these schemes will act as a 

veritable tool for the numerical solution of initial 

value problems. 
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